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Abstract

This work studies the preattentive discrimination of achromatic textures composed of mixtures of different (Weber) contrasts. These
textures differ not at all in local spatial structure, but only in the relative proportions of different contrasts they comprise. It is shown that,
like chromatic discrimination, preattentive discrimination of such textures is three-dimensional. The current results do not uniquely
determine the characteristics of the three texture filters mediating human discrimination of these textures; they do, however, define
the space of textures with 4th-order polynomial histograms to which human vision is sensitive. Three real-valued functions of contrast
that collectively capture human sensitivity to the textures in this space are presented.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It has often been observed that vision is not just a cam-
era. Vision does not merely capture a 2-d image of the pat-
tern of light playing over the retina; rather it operates with
remarkable inferential power to construct a world popu-
lated by objects in 3-d space directly revealing their mani-
fold ‘‘affordances’’ (Gibson, 1979).

However, vision does use some camera-like processes.
The retina itself operates like a camera. Under photopic
conditions, the retina captures three, time-varying images:
one with the L-cones, another with the M-cones and a third
with the S-cones. These three images provide all the input
to photopic vision. And, as dramatized by Julesz (1962,
1975) and Beck (1966, 1982), these are not the only cam-
era-like processes in vision. In experiments using textures
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composed of short, oriented line segments, they observed
that it is easy to find textures X and Y such that the loca-
tion and shape of a patch of X embedded in a background
of Y are immediately apparent despite the fact that on
average, both textures produce equal activation in each
cone class. In the case of retinal cones, we know that a cone
of a particular type captures light of certain wavelengths in
its small local receptive field. And the visual field is more-
or-less fully tiled with cones of each of the three types. In
the case of textures, we suppose that there are more com-
plex detectors, sensitive to lines of particular orientations,
and that the visual field is more-or-less fully tiled with each
particular type. These early examples and conceptualiza-
tions launched the field of research into preattentive texture
segregation.

The many ‘‘back pocket’’ models (Chubb & Landy,
1991) proposed to account for preattentive texture segrega-
tion (e.g., Bergen & Adelson, 1988; Bergen & Landy, 1991;
Bovik, Clark, & Geisler, 1990; Caelli, 1985; Fogel & Sagi,
1989; Graham, 1991; Graham & Sutter, 1998; Graham,
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Sutter, & Venkatesan, 1993; Grossberg & Mingolla, 1985;
Knutsson & Granlund, 1983; Landy & Bergen, 1991; Malik
& Perona, 1990) all posit two primary processing stages:

1. A filtering stage in which some fixed battery of texture

filters is applied to the visual input to produce a corre-
sponding set of output images. Such a filter is analogous
to a particular cone class.

2. A subsequent surveying stage in which the variations
perceived within the visual field are derived from the fil-
tering stage output images. The outcome of a survey is
analogous to the assignment of a particular color and
brightness to a region.

To be useful, the filtering must be fast; each texture filter
must work like a movie camera, capturing a continuous
image stream. This leads us to view all texture filters as reti-
notopically organized arrays of neurons, and the output
images they produce as ‘‘neural images’’ (Robson, 1980).
Each texture filter thus requires a substantial commitment
of resources: it sits at the top of a vast, pyramid of subsidi-
ary neurons, all of which are continuously active in normal
vision. Given the cost in resources of a single texture filter,
it seems likely that the number of distinct texture filters in
human vision is small.1

A basic question about any texture filter is: what does it
sense? In one of these texture filter arrays, any given filter is
assumed to monitor a fixed, local region of the visual field,
computing from the input to that region the same statistic
as do all the other filters in the array for their regions. It is
this texture filter statistic that functionally defines the filter.
The central questions about preattentive visual processing
are how many texture filters are needed to characterize
human vision? and what statistics do they sense?

The method we develop here involves searching for ‘‘tex-
ture metamers,’’ a general approach first explored by Rich-
1 This statement slightly oversimplifies the situation. Consider, for
example, sensitivity to texture orientation in a particular spatial frequency
band. Suppose, as seems likely, that within a given spatial frequency band,
striate cortex contains neurons tuned to all orientations. This is quite
different from the case of only three types of retinal cones. Infinitely many
differently tuned neurons could be taken to mean that there exist infinitely
many mechanisms tuned to distinct center orientations. However, suppose
the tuning of any particular neuron is no sharper than approximately
60 deg. Suppose the orientation tuning curves (sensitivity as a function of
stimulus line-segment orientation) of all of these neurons have similar,
Gaussian profiles, differing only in the central orientation. If so, then the
tuning functions of all of these neurons span a space of dimension 3
(oriented line segments are described within 180 deg). Dimension 3 in turn
implies that, when any small spatial neighborhood is presented with a
complex mixture of differently oriented line segments (i.e., a spectrum of
orientations), one needs to know only the responses of three neurons
(analagous to three color receptors) with linearly independent tuning
curves in order to predict the response to the orientations mixture. This
example illustrates that even though the population of neurons represents
a continuum of center frequencies, it would be nonetheless true that the
number of distinct (taken here to mean nonredundant) orientation-
selective filters within a given spatial frequency band could be quite
modest.
ards and colleagues (Richards, 1979; Richards & Riley,
1977). Two lights with different spectra are called ‘‘meta-
mers’’ if they appear identical in color and brightness.
From color theory we know that this will be true only if
the two lights produce the same levels of activation in each
of the three cone classes. We shall make precisely analo-
gous assumptions about textures. That is, we will assume
that human vision embodies some number of ‘‘texture fil-
ters’’ (analogous to the different cone classes) that enable
preattentive texture discrimination and that two textures
will appear identical (at least to preattentive vision) if they
produce the same levels of activation in each of these tex-
ture filters. We expect that most readers will be familiar
with color theory, and we will try to sharpen intuitions
about our texture manipulations by drawing the analogy
between textures and colors wherever appropriate.

Suppose we create a display that consists of a patch of
one color surrounded by a background of a different color.
To make the central patch disappear, i.e., to match the
background exactly in color and brightness, we need to
be able to manipulate at least three different components,
paints or lights, that comprise the central patch. For exam-
ple, in computer monitors three differently colored lights
are combined to create the patch and background. There
is a single, unique combination that produces a match
between the patch and the background. With four or more
lights or paints there are infinitely many different combina-
tions that can produce an exact match, and with only two
lights, matches are usually not possible. From this we infer
that color vision is three-dimensional, i.e., that there are
three receptors. However, this experiment does not enable
us to say what the receptors are (Krantz, 1975). The pres-
ent experiment deals with random textures, in which one
texture is used as a background, and a patch is composed
as a mixture of different textures. As in the case of color,
we ask how many different component textures are needed
in the mixture to enable an appropriate combination of the
components to match any arbitrarily chosen background?
And, what are the essential properties of the component
textures to enable a match? The texture experiment is com-
pletely analogous to the color experiment.

We address these questions in a restricted domain in the
current project. Here, we focus on achromatic textures
composed of randomly arranged elements of different
intensities. The first question is, what’s the minimum num-
ber of texture filters required to account for human dis-
crimination of these sorts of textures? We find that the
number is three. The second question is, what do these tex-
ture filters sense? Since our textures vary only in the pro-
portions of different intensities they contain, we can only
talk about the sensitivity of these filters to different intensi-
ties. We cannot say anything about the sensitivity of the
implicated texture filters to orientation, spatial frequency
or various other aspects of the local visual input. In fact,
the current experiments by themselves do not uniquely
determine the sensitivities of individual texture filters to dif-
ferent Weber contrasts. However, they do determine the



2 Chubb, Econopouly, and Landy (1994) used independent, identically
distributed (IID) textures, whose texel values are jointly independent
random contrasts identically distributed as p. Unlike a scramble, an IID
texture patch may have different contrasts in proportions that deviate
randomly from p. We use scrambles to eliminate uncontrolled histogram
variability. Note, however, that as a consequence scrambles contain
spatial dependencies. Thus, for example, if the top-half of Sp happens by
chance to have a mean that is higher than the mean of p, then the bottom-
half must have a mean that is lower.
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three-dimensional space of textures spanned by the three
sensitivity functions. An orthonormal basis of this space
is provided later in Fig. 7.

2. The generation and description of textures

We begin with essential definitions (e.g., Chubb, Landy,
& Econopouly, 2004).

2.1. Texture patches

2.1.1. Weber contrast

We use the term ‘‘Weber contrast’’ to refer to the nor-
malized deviation of stimulus luminance from the back-
ground luminance (to which it is assumed the observer is
adapted). Thus, if the background luminance is B, then
the Weber contrast of a texture element with luminance
L is (L � B)/B.

2.1.2. The set of 17 contrasts, C

Our stimuli are arrays of small square texels (texture ele-
ments) painted with values from C, the set of 17 (Weber)
contrasts �1, �7/8, . . ., 7/8, 1. (Thus the contrasts in C
increase linearly from �1 (black) through shades of gray
up to 1 (white).)

Under the analogy to color theory, the set C corre-
sponds to the set of quanta of different wavelengths. Just
as a light can be viewed as a mixture of quanta of different
wavelengths, one of our textures can be viewed as a mix-
ture of the different contrasts in C.

2.1.3. Histograms

The term ‘‘histogram’’ usually refers to a function that
gives the number of pixels in an image that take any given
value. We deviate from this usage in calling any probability
distribution on C a histogram.

Under the analogy to color theory, the histogram of a
texture corresponds to the spectrum of a light. However,
the analogy breaks down in one way that should be noted.
Light spectra can vary in amplitude, but texture histograms
cannot. Thus, for example, one can double the intensity of
a light by doubling its quantal flux at each wavelength;
however, there is no way to cram more elements into a
patch of texture of some fixed area. In this regard, our tex-
tures are like equiluminant lights (i.e., lights that all share
the same fixed intensity).

U denotes the uniform histogram: i.e., U(c) = 1/17 for
all c 2 C. Thus a texture with histogram U is like a white
light—i.e., a light with a flat spectrum.

2.1.4. Scrambles

To generate a texture patch with N texels, we first stip-
ulate a histogram p. Then we load a virtual urn with N con-
trasts from C in proportions conforming as closely as
possible to p and draw N times from the urn without
replacement to assign contrasts to texels. The resulting
patch Sp is called a scramble with histogram p. Thus, SU
is a scramble with equal proportions of all 17 contrasts.2

A texture patch composed of a particular scramble is anal-
ogous to a patch of light with a particular spectrum.

2.2. Impact functions

A cone’s response to a light is very simple: the cone just
adds up all the quanta in the light weighted by its differen-
tial sensitivity to their different wavelengths. Take an S-
cone, for example. The S-cone’s sensitivity to different
wavelengths w is captured by its spectral sensitivity function

fS(w). Thus the response of an S-cone to a light with spec-
trum r is given by fS Æ r = �fS(w) r(w)dw, the dot product of r

with fS. Similarly, for fM and fL the M- and L-cone spectral
sensitivity functions, fM Æ r = �fM(w) r(w)dw and
fL Æ r = �fL(w) r(w)dw give the corresponding responses of
M- and L-cones.

In the domain of scrambles, we assume that human
vision comprises some set of texture filters F1, F2, . . .,FN

(analogous to the three cone classes) that enable discrimi-
nation of scrambles. We summarize the scramble-sensitiv-
ity of given one of these filters, Fk, by its impact function

fk. Just as, for example, fS gives the sensitivity of an S-cone
to quanta of different wavelengths, fk gives the sensitivity of
Fk to texels of different contrasts, and just as the dot prod-
uct fS Æ r gives the S-cone activation produced by a light of
spectrum r, fk Æ p =

P
c2C fk(c)p(c) gives the average Fk-

activation produced by a scramble with histogram p.
It is important to realize that the impact functions fk

give us only very limited information about the computa-
tions performed by the texture filters Fk. A given Fk com-
putes a fixed texture filter statistic at each location (x,y)
in space. This texture filter statistic is some (perhaps com-
plicated and/or nonlinear) function of the input values in a
spatial neighborhood of (x,y) called the receptive field of
Fk. If we think of Fk as being embodied by an array of neu-
rons, then a given texel, s, of contrast c in an input scram-
ble will influence the output values of all of those Fk

neurons in whose receptive fields it falls. Thus, s will dis-
tribute its influence across a number of Fk output neurons.
Moreover, the response of a given one of these neurons will
depend not only on s but also on the contrasts of all of the
other texels that fall in its receptive field. Thus it is natural
to expect the influence of a texel of contrast c to depend to
some extent on the configuration of texel contrasts sur-
rounding it. All of the details of this process and all con-
text-dependent variations in the impact exerted by a texel
of contrast c are hidden by fk. For any contrast c 2 C,
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fk(c) tells us only the net, average impact exerted by a texel
of contrast c on the space-average output of Fk. However,
the texture filters most useful for discriminating scrambles
will be the ones whose space-average responses are strongly
and systematically influenced in different ways by texels of
different contrasts. It is precisely these systematic influences
that are captured by the impact functions fk.

2.3. Modulators and modulation spaces

Different scrambles are generated by perturbing their
histograms away from uniformity. The functions we use
to achieve these perturbations are called modulators. Spe-
cifically, a function m : C! R is called a modulator if each
of U + m and U � m is a probability distribution (i.e., is
nonnegative for all c 2 C and sums to 1). In addition m

is called maximal3 if max(|m|) = 1/17. In fact, all of the
modulators we use to generate stimuli in this project are
maximal.

In our experiments, subjects discriminate between
scrambles SU+m and SU�m for various maximal modulators
m. In fact, often, as a shorthand for saying that an observer
correctly discriminates SU+m from SU�m with probability q
we will instead say that ‘‘The observer discriminates m with
success rate q’’ or, if q is close to 1.0, ‘‘m is easily
discriminable’’.

The set of functions spanned by N linearly independent
modulators is called a modulation space of dimension N.4 X
denotes the 16-dimensional space containing all modula-
tors (X is only 16-dimensional because any modulator is
orthogonal to the constant function U).

2.4. Projection

For a light with spectrum r, much of the structure of r is
likely to be irrelevant to the color produced by the light. In
fact, we can split r uniquely into the part that is relevant
and the part that is irrelevant. For H the (three-dimen-
sional) space of functions spanned by the three cone spec-
tral sensitivity functions fS, fM and fL, the relevant part of r

is called the projection of r into H; it produces S-, M- and
L-cone activations equal to those produced by r. The irrel-
evant part is orthogonal to each of fS, fM and fL; as a result,
it produces S-, M- and L-cone activations equal to zero.

Moving back to scrambles, let /1, . . ., /N be an orthog-
onal basis of U, a subspace of X (An orthogonal basis can
always be derived using the Gram–Schmidt procedure.).
For any function f : C! R, the projection of f into U is

ProjUðf Þ ¼
XN

i¼1

W i/i; ð1Þ
3 Note that this last condition implies that for any scaler A greater than
one, there must exist some c 2 C for which either U(c) + Am(c) < 0 or
U(c) � Am(c) < 0, implying that Am is not a modulator.

4 Note that any modulation space contains many functions g for which
max(|g|) > 1/17 and thus are not modulators.
where,

W i ¼
/i � f
/i � /i

; i ¼ 1; . . . ;N : ð2Þ

One can think of ProjU(f) as the portion of f that resides in
(is accounted for by) U. The following basic fact is easily
proven:

2.4.1. Proposition
For any function f : C! R and any subspace U of X,

f � ProjU(f) is orthogonal to every function in U.

2.5. The discrete Legendre modulators

The maximal modulators k1, . . ., k7 (Fig. 1) play a cen-
tral role here. These modulators (discrete domain ana-
logues of the Legendre polynomials) are orthogonal.
Moreover, ki is an ith-order polynomial, for i = 1, . . ., 7;
thus, k1, . . ., ki span the space of all ith-order polynomial
modulators, and in particular k1, . . ., k7 span the space of
all 7th-order modulators. Fig. 2 shows examples of scram-
bles SU+m and SU�m for m = k1, . . ., k4.

K subscripted by any concatenation of integers
2{1,2, . . ., 7} denotes the modulation space spanned by
the the kis whose subscripts are in the concatenated
sequence. Thus, for example, we write K123 for the modu-
lation space spanned by k1, k2, k3 and K34567 for the mod-
ulation space spanned by k3, k4, . . .,k7.

2.6. Assumptions about discrimination

2.6.1. Differential activation, Dk(m)

Our task requires the subject to judge the discriminabil-
ity of the textures SU+m and SU�m in the stimulus dia-
grammed in Fig. 3. The differential activation produced
in texture filter Fk by this stimulus is assumed to be

DkðmÞ ¼ fk � ðUþ mÞ � fk � ðU� mÞ ¼ 2f k � m: ð3Þ
That is, differential activation of a texture filter by a mod-
ulator is simply twice the dot product of the filter impact
function and modulator.

2.6.2. Discriminability and null points

We assume that discrimination performance is a strictly
increasing function of |Dk(m)|, for k = 1, 2, . . ., N. For non-
negative scalers a, |Dk(am)| = a|Dk(m)|. Thus, performance
is optimized by choosing a so that am is a maximal modu-
lator. We also assume that chance discrimination perfor-
mance occurs only if |Dk(m)| = 0 (implying that fk Æ m = 0)
for k = 1, 2, . . ., N. Any maximal modulator m yielding
chance discrimination is called a null point.

The idea of a null point is illustrated by the inability of
dichromats to distinguish numbers hidden in an Ishihara
color plate. Take the case of a protanope, i.e., a dichromat
who lacks L-cones. For two lights to be indiscriminable to
a protanope, their spectra r1 and r2 must satisfy fS Æ r1 =
fS Æ r2 and fM Æ r1 = fM Æ r2. Suppose a computer monitor



Fig. 1. Modulators k1, k2, . . ., k7. The maximal modulators plotted here (and especially k1,k2, . . ., k4) play a central role in this study. These modulators
(discrete domain analogues of the Legendre polynomials) are orthogonal. Moreover, ki is an ith-order polynomial, for i = 1, . . ., 7; thus, k1, . . ., ki span the
space of all ith-order polynomial modulators.

Fig. 2. Some scrambles from K1234. The scrambles SU+m and SU�m for
m = k1, . . ., k4. The inset in each patch of scramble gives the histogram of
that scramble.

Fig. 3. Diagram of stimulus used to find minimal salience modulators.
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creates lights from three sources (e.g., red, green and blue)
with spectra s1, s2 and s3 and let H be the space of functions
spanned by s1, s2 and s3. The projections into H of fS and
fM span a planar subspace, which means there exists a non-
zero function q in H that is orthogonal to both of fS and fM.
Thus, for any ‘‘base light’’ with spectrum b, the lights with
spectra b + aq, a 2 R, all satisfy fS Æ (b + aq) = fS Æ b and
fM Æ (b + aq) = fM Æ b, implying that to the protanope all
of these different lights appear identical to the base light
with spectrum b. Such a set of lights is called a ‘‘protanopic
confusion line’’. By choosing b appropriately so as to be
able to take a as large as possible under the constraints
of our display system we can create two lights with spectra
r1 = b + aq and r2 = b � aq that are maximally discrimina-
ble to a normal trichromat yet which a protanope will be
unable to discriminate. If we paint the digit in the Ishihara
plate with one of these lights and the background with the
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other, this will give us a maximally sensitive test of
protanopia.

In our texture experiments, a null point m in some mod-
ulation space U is analogous to the function aq (with a
taken as large as possible) in the space H; also, the scram-
ble SU is analogous to the ‘‘base light’’ with spectrum b.
Just as all of the cones in the retina of the protanope give
the same response to all of the lights with spectra b + aq, all
of the texture filters resident in human vision give the same
response to scrambles SU+m and SU�m. As a result, these
two scrambles will be preattentively indiscriminable even
though m is a maximal modulator.
2.6.3. Guiding principles

Suppose there exist in human vision at most N texture
filters with linearly independent impact functions fk,
k = 1, 2, . . ., N.5 Under our assumptions

1. Any modulation space U of dimension greater than N

must contain null points. Moreover, if the dimension
of U is N + 1, and if the projections into U of the impact
functions fk are linearly independent, then U will contain
a unique null point.6

2. There exist modulation spaces U of dimension N devoid
of null points.7 (In particular, this is true of the space
spanned by fk, k = 1, 2, . . ., N.)

See the Appendix for Proofs of 1 and 2. As will become
clear below, the logic of the experiments reported here
depends crucially on these two simple derivations from lin-
ear algebra.
2.7. Empirical background

In light of these observations, a thought experiment
shows that human vision has at least two texture filters dif-
ferentially sensitive to different scrambles. As one may
imagine, it is impossible to compensate for a substantial
difference in mean luminance of two scrambles by adjusting
their relative variances, and similarly impossible to com-
pensate for a substantial difference in variance between
two scrambles by adjusting their relative mean luminances.
This intuition can be tested by exploring the 1-d curve of all
5 Under this supposition, human vision may contain more than just
these N texture filters; if so, however, the additional texture filters are
either uninformative about scrambles (i.e., their impact functions are
invariant across C) or redundant (i.e., their impact functions can be
expressed as linear combinations of the impact functions fk,
k = 1,2, . . ., N).

6 As the function q used to generate protanopic confusion lines is unique
in the space spanned by the spectra s1, s2 and s3 of a given set of red, green
and blue sources.

7 Consider the case of a normal trichromat viewing an RGB display, and
let H be the space of functions spanned by the spectra of the R, G and B
sources. If the sources have been well-chosen, then the projections into H
of the cone sensitivity functions fS, fM and fL will be linearly independent,
implying that H will contain no null points.
maximal modulators m = Ak1 + Bk2. All such m’s yield
discrimination well above chance, showing that at least
two (and possibly more) texture filters discriminate modu-
lators in K12. We write F1 and F2 for two of the texture fil-
ters sensitive to m 2 K12 and f1 and f2 for their impact
functions.

Chubb et al. (1994) demonstrated that a single texture
filter, B, strongly predominates in discriminating modula-
tors m 2 K34567 (with other texture filters exerting negligible
influence on discrimination); they also measured
ProjK34567

ðfBÞ, for fB the impact function of B. If fB were
Fig. 4. The blackshot impact function. 7th-order polynomial approxima-
tions of the impact function fB of the blackshot texture filter (for three
observers). Note that the blackshot texture filter is sharply tuned to
contrasts near �1.0, showing no significant differential sensitivity to
contrasts between �0.875 and 1.0.
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equal to ProjK34567
ðfBÞ, then ProjK12

ðfBÞ would be zero.
Chubb et al. (2004) showed that this was not the case by
measuring Proj12(fB). They found that fB correlates
strongly both with k1 (positively) and k2 (negatively) and
is thus quite sensitive to many of the modulators in K12.

By combining the results of Chubb et al. (1994) and
Chubb et al. (2004) one can derive the full 7th-order poly-
nomial approximation (ProjK1234567

ðfBÞ) of fB shown in
Fig. 4. As Fig. 4 makes clear, B is sharply tuned to con-
trasts near �1.0, showing no significant differential sensi-
tivity to contrasts between �0.875 and 1.0. Chubb et al.
(2004) called this the ‘‘blackshot’’ texture filter.

There is no question that at least two distinct texture fil-
ters differentiate modulators in K12. If there are only two
such texture filters, then because ProjK12

ðfBÞ is nonzero,
one of them must be B. Alternatively, there may be more
than two such texture filters. The main goal of the current
experiment is to resolve this question.

3. Methods

3.1. General strategy

Suppose there exist only two texture filters, F1 and F2, with impact
functions f1 and f2 that enable scramble discrimination. Then guiding prin-
ciple 1 (Section 2.6.3) implies that each of the three-dimensional spaces
K123, K124, K134, K234 must contain at least one null point.

For two modulators m1 and m2, if the discriminability of m1 is greater
than that of m2, then we expect a boundary formed between abutting
patches of SUþm1

and SU�m1
to appear more vivid than a boundary between

patches of SUþm2
and SU�m2

. The first part of the current study relies on our
observers to assess the relative strengths of such apparent differences
between pairs of textures. We assume that if one of the spaces Kijk contains
a null point, then that null point will be identical to the maximal modula-
tor m in that space that yields the weakest apparent difference between
SU+m vs. SU�m. We call this modulator the minimal salience modulator
in Kijk and denote it m̂ijk . We shall use an adjustment procedure to find
estimates of the minimal salience modulators m̂123, m̂124, m̂134 and m̂234.

We then need to test whether the estimates we have found are actually
null points. To do this we measure performance in discriminating each of
them in a preattentive texture segmentation task. If (and only if) all of
these estimated minimum salience modulators prove to be null points
(i.e., yield chance discrimination performance), will we be able to conclude
that human vision has only two texture filters enabling scramble
discrimination.

We shall also use an adjustment procedure to find the minimal salience
modulator m̂1234 in K1234. Previous results strongly suggest that m̂1234 must
be a null point regardless of the number of texture filters differentially sen-
sitive to modulators in X. This is clearly true if the number of such texture
filters is three or fewer. It is also true, however, if there are more than
three; the reasoning runs as follows: Suppose F is a texture filter other than
B that is sensitive to modulators in X, and let fF be its impact function. We
assume that none of the modulators kk, k = 8, 9, . . ., 16 contribute signif-
icantly to fF. The finding of Chubb et al. (1994) that B uniquely predom-
inates in discriminating modulators in K34567 implies in addition that none
of kk, k = 3, 4, . . ., 7, contribute significantly to fF. It follows that fF can
be well-approximated as a linear combination of k1 and k2. This means
that if there are more than two texture filters other than B that are differ-
entially sensitive to modulators in X, then the impact functions of all of
them are linear combinations of k1 and k2, implying that they are linearly
dependent. In this case, however, the space spanned by the impact func-
tions of all of the texture filters differentially sensitive to modulators in
X can never be of dimension greater than three from which it follows that
m̂1234 should be a null point.
3.2. Procedural details

3.2.1. Stimulus configuration

Each display comprised a vertically oriented square wave, each bar of
which was a scramble; the histograms of scrambles filling the bars alternated
between U + m and U � m for some maximal modulator m subject to
manipulation. The square wave had four bars, each bar consisting of 68
rows by 17 columns of texels. Each texel subtended 8.77 min at the viewing
distance of 88 cm. The entire display thus subtended approximately 9.8 deg.
The texture square wave was presented in the middle of a monitor screen
against a background of luminance 60 cd/m2. The 17 luminances used were
approximately equal to 7.5n cd/m2, for n = 0, 1, . . ., 16. More precisely, the
lowest luminance was measured at 1 cd/m2; the highest at 119 cd/m2.

3.2.2. Luminance calibration

Linearization was achieved using a by-eye procedure in which a regular
grid of texture elements containing three intensities lumlo, lumhi and lummid

(half with luminance lummid, 1/4 with lumlo and 1/4 with lumhi) was made
to alternate in a coarse vertical square-wave with texture comprising a
checkerboard of texture elements alternating between intensities lumlo

and lumhi. (We used a three-luminance checkerboard rather than a uni-
form field of luminance lummid in order to control for possible spatial non-
linearities in the display (Klein, Hu, & Carney, 1996; Mulligan & Stone,
1989).) The screen was then viewed from sufficiently far away that the fine
granularity of the texture was invisible. At this distance, the square-wave
modulating between the two types of texture had a spatial frequency of
approximately 6 c/deg. Since the texture itself could not be resolved, the
square-wave was visible only if the mean luminance of alternating texture
bars was different. Thus, the pixel value valmid that made the square-wave
vanish produced a luminance equal to the average of the luminances lumlo

and lumhi. We generated a lookup table by reiterating this procedure with
different luminances lumlo and lumhi to determine, in each case, the lummid

midway between lumlo and lumhi. Finally, a smooth function was fit to
the resulting data, and the 17 luminances used in our stimuli were
extracted.

3.2.3. Adjustment methods, subject CC

In the first phase of the experiment, observer CC used a method of adjust-
ment to estimate the minimal salience point m̂1234 in K1234 and also each of
the minimal salience points m̂ijk in Kijk for ijk = 123,124,134, and 234. In esti-
mating m̂1234, bar histograms alternated between U + m and U�m, for
m = A1k1 + A2k2 + A3k3 + A4k4, with the weights Ak, k = 1,2,3,4 subject
to adjustment. Similarly, in estimating m̂ijk for ijk = 123,124,134, or 234, tex-
ture bar histograms alternated between U + m and U�m, for
m = Aiki + Ajkj + Akkk with the weights Ai, Aj, Ak subject to adjustment.

During a given adjustment, the texture-defined squarewave pattern
was presented continuously, with fresh, independent stimulus realizations
presented at the approximate rate of 2.33/s. For each of ijk = 123, 124,
134, and 234, preliminary investigations had revealed that the minimal
salience point m̂ijk ¼ Aiki þ Ajkj þ Akkk would have the signs of Ai, Aj,
and Ak all equal (Otherwise, the resulting texture-defined square wave
was quite obvious.). Accordingly, each of A1, A2, A3 and A4 was confined
to the interval [0,1] in all adjustments.

In estimating m̂ijk (ijk = 123,124,134,234) CC was able to control the
display in four ways. Pressing the keyboard ‘‘a’’ slightly lowered Ai while
preserving the current ratio of Aj to Ak, yet increasing both so as to keep
the modulator m = Aiki + Ajkj + Akkk maximal. Pressing ‘‘b’’ and ‘‘c’’
produced analogous changes for Aj and Ak, respectively. Finally, pressing
‘‘t’’ swapped the histograms of square wave bars: if the first and third bars
had had histogram U + m and the second and fourth U � m, then pressing
‘‘t’’ gave the first and third bars histogram U � m and the second and
fourth bars U + m. When CC was satisfied that the texture square wave
was minimally salient, he entered ‘‘O’’, and the three values Ai, Aj and
Ak were recorded.

The procedure for estimating m̂1234 was exactly the same, except that in
addition to being able to press ‘‘a’’, ‘‘b’’ and ‘‘c’’ to decrease A1, A2, and A3

in m = A1k1 + A2k2 + A3k3 + A4k4, CC could also press ‘‘d’’ to decrease
A4 while preserving the relative proportions of A1, A2, and A3.



Fig. 5. Stimulus configurations in the 4AFC detection task. On a given
trial in the detection experiment, the stimulus conformed to one of the
four patterns shown, and the observer had to indicate which pattern had
been displayed by pressing one of the ‘‘right arrow’’, ‘‘left arrow’’, ‘‘up
arrow’’, or ‘‘down arrow’’ keys to indicate the location of the target bar
(the bar containing SU�m) relative to fixation.
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CC obtained 16 estimates of m̂1234 and also of each of m̂ijk for
ijk = 123, 124, 134, 234.

3.2.4. Adjustment methods, subjects DB, JN

A modified procedure was then used to obtain estimates of m̂1234 and of
m̂ijk (ijk = 123, 124, and 134) for observers JN and DB, two of the other
authors, both of whom understood the hypotheses under investigation
(Estimates of m̂234 were not derived for either of these observers because,
as described below, CC was found to be less sensitive to m̂234 than to any
of m̂123, m̂124, or m̂134.).

In this modified procedure, observers viewed a uniform gray screen. If
they pressed ‘‘s’’, two texture-defined squarewaves would be presented in
succession, each for one second separated by a one second uniform gray
ISI. The bars of the first squarewave alternated between histograms
U + m1 vs. U � m1 for some maximal modulator m1, and the second
squarewave alternated between histograms U + m2 vs. U � m2 for a dif-
ferent modulator m2. For each such pair of stimuli, the observer was
allowed to review the two squarewaves as many times as desired (by
pressing ‘‘s’’ repeatedly) in order to make the following ternary judgment:
If the first squarewave was clearly more salient than the second, the
observer pressed ‘‘1’’; if the second was more salient than the first, the
observer pressed ‘‘2’’; if the two squarewaves were roughly equal in sal-
ience, then the observer pressed ‘‘e’’. Observers were instructed to use the
‘‘e’’ key only when they could not resolve all doubt as to which of the
two squarewaves was more salient. These judgments proved to be quite
easy and reliable.

The observer’s responses were used to control a search for the minimal
salience point in one of the spaces K1234 or Kijk (ijk = 123, 124, 134). Spe-
cifically, in each adjustment trial, a line search was first conducted (as
described below) to find the minimal salience modulator m̂1i in the 1-d
space spanned by k1 and ki, for i the second index in the subscript. Then
an additional line search was conducted to find the minimal salience mod-
ulator m̂1ij in the 1-d space spanned by m̂1i and kj for j the third index in the
space subscript. If the target space was K1ij, then m̂1ij was taken as an esti-
mate of the minimal salience point. If the target space was K1234, a final
line search was conducted to find the minimal salience point m̂1234 in the
space spanned by m̂123 and k4.

Each line search was controlled as follows. At each stage in the search,
the participant is asked to compare the salience of two maximal modula-
tors q and r. At the start of the line search, q and r are initiallized so that
the minimal salience point m can be safely assumed to lie between them in
the following sense: for some a between 0 and 1, m = b(aq + (1 � a)r),
where the scaler b is chosen to make m maximal. Suppose the participant
presses a key indicating that q is clearly more salient than r. We take this
to mean that the minimal salience point is closer to r than to q. In this case,
we replace q by qnew = b(q + r), where scaler b makes qnew a maximal mod-
ulator, and we leave r unchanged. Thus, qnew is pushed to the point in the
search locus midway between r and q. If the minimal salience point is
indeed closer to r than q, then it will remain between r and qnew. If the par-
ticipant presses ‘‘e’’ (indicating that q and r are similar in salience) then we
assume the miminal salience point is closer to the midpoint between q and
r than it is to either q or r. Thus we keep the minimal salience point
between qnew and rnew by setting qnew = b(3q + r) and rnew = c(3r + q),
where scalers b and c make qnew and rnew maximal modulators (this pushes
qnew (rnew) half way from q (r) toward the midpoint between q and r).

For JN (DB) this procedure was used to obtain 22 (15) estimates of
m̂1234 and 21 (15) estimates each of m̂ijk for ijk = 123, 124, and 134.

3.2.5. Null point assessment

Each observer was then tested in a texture discrimination task to assess
his sensitivity to m ¼ m̂ijk , ijk = 123, 124, 134, and to m ¼ m̂1234. In addi-
tion, CC was tested with m ¼ m̂234. All conditions were presented in a
mixed design. Each block comprised 20 trials from each condition (10 tri-
als in which the target patch had histogram U + m and the background
had histogram U � m, and 10 in which target and patch histograms were
reversed). Observers completed five blocks for a total of 100 trials per con-
dition. On a given trial, the observer fixated a cue spot centered in a mean
gray field, and initiated immediate stimulus presentation with a button-
press. The stimulus was presented for 200 ms, and was followed by a uni-
form gray field, with the cue spot in the center. As in the adjustment phase,
each texel subtended 8.77 min at the viewing distance of 88 cm, and the
entire display thus subtended approximately 9.8 deg. On a given trial
the stimulus conformed to one of the four patterns shown in Fig. 5, and
the observer had to indicate which pattern had been displayed. The subject
had to press one of the ‘‘right arrow,’’ ‘‘left arrow,’’ ‘‘up arrow,’’ or ‘‘down
arrow’’ keys to indicate the location of the target bar relative to fixation.
4. Results

The results are shown in Fig. 6. The four plots on the
left show the estimated minimal salience modulators m̂123,
m̂124, m̂134 and m̂1234 for each of CC (in blue), DB (in
green) and JN (in red). In addition, m̂234 is plotted for
CC in the lower right of Fig. 6. The curves for the three
observers superimpose quite closely for each of m̂123, m̂134

and m̂1234. However, some slight variability is evident in
the estimates of m̂124. The three numbers shown at the
top of a given subplot of Fig. 6 give the number of trials
out of 100 in which the three observers (CC, DB and JN,
from left to right) succeeded at discriminating the plotted
modulator in the 4AFC task. Starred results are signifi-
cantly higher than expected under the null hypothesis that
the actual probability of a correct response is 0.25 (in all
cases, p < 0.002). p-values for unstarred results are all
greater than 0.05. Specifically, the p-values for 29, 30,
31 and 33 are 0.28, 0.21, 0.15 and 0.07. We conclude that
m̂123 is not a null point for either of CC or JN and that



Fig. 6. Minimal salience modulators derived from the 4AFC texture discrimination experiment. (a–d) The estimated minimal salience modulators m̂123,
m̂124, m̂134 and m̂1234 for each of CC (in blue), DB (in green) and JN (in red). In (e) m̂234 is plotted for CC. The three numbers shown at the top of a panel
give the number of trials out of 100 in which CC, DB and JN (from left to right) succeeded at discriminating the plotted modulator in the 4AFC detection
task. Starred results are significantly higher than expected under the null hypothesis that the actual probability of a correct response is 0.25 (in all cases,
p < 0.002). p-values for unstarred results are all greater than 0.05: for 29, 30, 31 and 33 the p-values are 0.28, 0.21, 0.15 and 0.07. We conclude that m̂123 is
not a null point for either of CC or JN and that m̂124 and m̂134 are not null points for any of our observers. On the other hand discrimination of m̂1234 is in
the vicinity of chance for all observers, suggesting that m̂1234 is at least an approximate null point for all observers. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this paper).
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m̂124 and m̂134 are not null points for any of our observers.
On the other hand discrimination of m̂1234 is in the vicinity
of chance for all observers, suggesting that m̂1234 is at least
an approximate null point.

The finding that the minimal salience points m̂124 and
m̂134 are not null points for any of our observers implies
that human vision embodies more than two texture filters
enabling scramble discrimination. However, the failure to
reject m̂1234 as a null point supports the three-texture-filter
theory.

5. Discussion

The finding that m̂124 and m̂134 were not null points for
any of our three observers supports the claim that human
vision embodies at least three scramble-sensitive texture fil-
ters, F1, F2 and F3 with linearly independent impact func-
tions f1, f2 and f3. On the other hand, as expected from
previous results, m̂1234 yielded performance not significantly
different from chance for all three observers, consistent
with its being a null point and supporting the claim that
there exist at most three scramble-sensitive texture filters
in human vision with linearly independent impact func-
tions. Note that these results with texture are exactly anal-
ogous what we would have observed had we done a color
discrimination experiment with three and with four prima-
ries. With four primaries, say red, green, blue, and yellow,
there would be a null point signaled by greatly different pri-
mary mixtures that are absolutely indistinguishable. By
contrast, with only three primaries, R, G and B, there are
no null points.

What can we say about these three texture filters? First,
we shall assume that all of their impact functions can be
well-approximated by 7th-order polynomials. Suppose we
identify F3 with the blackshot texture filter (Chubb et al.,
2004). This filter has been isolated and functionally char-
acterized. The claim that discrimination of modulators in
K34567 is approximately univariate is supported by demon-
strations that modulators in this space all trade off line-
arly with each other in controlling discrimination
performance (for details, see Chubb et al., 1994). If multi-
ple texture filters were being used to make discriminations
in K34567, then all would have to have impact functions
sharing the same projection into K34567. Note however,
that the projection of an impact function into K34567

has five free parameters, and for two impact functions
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to share the same projection, their five-dimensional
parameter vectors must lie on the same line through the
origin. As argued in detail by Chubb et al., 2004, this is
highly unlikely unless all but one of these projections is
0—i.e., unless only one texture filter is being used to dis-
criminate scrambles in K34567. This finding also implies
that each of f1 and f2 has a near-zero projection into
K34567, which in turn implies that each of f1 and f2 can
be well-approximated by a linear combination of k1 and
k2. The current results show, in addition, that each of
f1, f2 and f3 is orthogonal to the null point m̂1234.

Consider the three functions, g1, g2 and g3 plotted in
Fig. 7. For k = 1,2,3, gk is derived by orthogonalizing kk

with respect to m̂1234 (We used CC’s m̂1234, but the corre-
sponding plots for JN and DB are very similar, as might
be expected given the similarity of their estimates of
m̂1234). These three functions are mutually orthogonal and
span the set of modulators in K1234 that are orthogonal
to m̂1234. They thus capture the space of all 4th-order poly-
nomial modulators to which human vision is sensitive.
Moreover, g1 and g2 are fairly well-approximated by linear
combinations of k1 and k2, whereas g3 abstracts the sharp
tuning of the blackshot texture filter to contrasts near
�1.0 from its sensitivity to scramble mean and variance.
Indeed, as might be expected from the fact that blackshot
strongly predominates in enabling discrimination of scram-
Fig. 7. A basis of the subspace of 4th-order polynomial modulators
sensed by human vision. The three functions, gk, k = 1, 2, 3, are derived by
orthogonalizing kk with respect to m̂1234. These three functions are
mutually orthogonal and span the set of modulators in K1234 that are
orthogonal to m̂1234. They thus capture the space of all 4th-order
polynomial modulators to which human vision is sensitive. Moreover, g1

and g2 are well-approximated by linear combinations of k1 and k2, whereas
g3 abstracts the sharp tuning of the blackshot process to contrasts near
�1.0 from its sensitivity to scramble mean and variance. Indeed, as might
be expected from the fact that blackshot strongly predominates in
enabling discrimination of scrambles in K34567, g3 matches very closely the
projection of the blackshot sensitivity function into K34 (given by the red
line). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this paper).
bles in K34567, g3 matches very closely the projection of the
blackshot sensitivity function into K34 (given by the red
line). The reader may wonder why it is that g3 does not
more closely resemble the blackshot impact function
f3 = fB shown in Fig. 4. The answer is that f3 contains sub-
stantial amounts of k1 and �k2 (as shown by Chubb et al.,
2004), whereas g3 does not. This is because, by construc-
tion, g3 is orthogonal to the space spanned by g1 and g2,
and this space is approximately equal to K12.

Our current results do not allow us to assert that f1

and f2 are identical to the functions g1 and g2 in Fig. 7.
All we can say with certainty is that f1 and f2 span
approximately the same space as g1 and g2. However,
the functions g1 and g2 are in accord with theories that
posit distinct 1st- and 2nd-order visual processes. First-
order processes are typically assumed to be sensitive pri-
marily to the raw Weber contrasts in the visual input.
The function g1 reflects the differential sensitivity to
scrambles one would expect such a 1st-order process to
provide. Second-order processes are assumed to be sensi-
tive to some rectified transformation (e.g., the square) of
Weber contrast. Such a rectifying process might reason-
ably be expected to provide differential scramble sensitiv-
ity in line with the function g2. Finally, note that since
only the blackshot texture filter f3 = fB (shown in
Fig. 4) is sensitive to modulators outside K1234, the three
functions, g1, g2 and f3 span the space of all 7th-order
polynomial modulators to which human vision is sensi-
tive. Therefore if, as seems likely, human vision has neg-
ligible sensitivity to modulations of order higher than 7,
then g1, g2 and f3 capture the entire space of human
scramble-sensitivity.

5.1. Relation to previous research

We have shown that preattentive scramble discrimina-
tion is enabled in human vision by three texture filters,
F1, F2 and F3 with linearly independent impact functions.
Scramble discrimination based on two or on four filters is
clearly excluded. Previous research (Chubb et al., 1994,
2004) shows that F3, the blackshot texture filter, is very
sharply tuned to Weber contrasts near �1.0 and does not
discriminate significantly between Weber contrasts between
�0.875 and 1.0. The current study implicates two addi-
tional texture filters, F1 and F2, that collectively provide
sensitivity to the 1st- and 2nd-order moments of the scram-
ble distribution.

5.2. Unanswered questions

Note that the current results leave open many ques-
tions about the three implicated texture filters. All tex-
tures used in the current study are devoid of spatial
structure and hence shed no light on the sensitivity of
any of these three texture filters to pattern. There is much
evidence, both psychophysical and neurophysiological, to
suggest that there exist multiple, 1st-order, band-tuned
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texture filters (corresponding to classes of simple cells
with receptive fields varying in size and orientation).
There is also evidence for multiple, band-selective, 2nd-
order texture filters (Sutter, Sperling, & Chubb, 1995).
These multiple 1st- and 2nd-order texture filters may be
the source of the sensitivity conferred by the hypothetical
texture filters F1 and F2 to the 1st and 2nd moments of
the scramble distribution. If so, then in reality each of
F1 and F2 should be seen not as an individual texture fil-
ter, but rather as a class of texture filters with different
sensitivities to spatial structure but equivalent sensitivity
to spatially random luminance variations. This may also
be true of the ‘‘blackshot texture filter’’; this question
awaits investigation.
Appendix A

In this section we give proofs of the following basic facts
upon which our methods depend.

If human vision has N texture filters with linearly inde-
pendent impact functions fk, k = 1, 2, . . ., N, then (under
the assumptions laid out in Section 2.6)

1. Any modulation space U of dimension greater than N

must contain maximal modulators m orthogonal to the
impact function of every texture filter (i.e., null points).
(In particular, if the dimension of U is N + 1, and if the
projections into U of the impact functions fk are linearly
independent, then U will contain a unique null point.)

2. There exist modulation spaces of dimension N devoid of
null points.

Proof of 1. Let gk, k = 1, 2, . . ., N, be the projections of the
impact functions fk into U. Suppose the gk’s are linearly
independent; then the subspace H that they span is of
dimension N (otherwise H is of dimension less than N).
The Gram–Schmidt orthogonalization procedure insures
that there exists an orthonormal basis bk, k = 1, 2, . . ., N,
of H. However, since U is of dimension greater than N, it
contains a modulator m that is linearly independent with
respect to the bk’s. For some nonzero scaler a, let

~m ¼ a m� ProjHðmÞð Þ ¼ a m�
XN

k¼1

ðm � bkÞbi

 !
: ð4Þ

Note that ~m is (1) nonzero (otherwise, ~m would be linearly
dependent with respect to the bk’s), and (2) orthogonal to
all of the bk’s, and hence to all modulators in H. Thus, if
we choose a to make ~m maximal, ~m is a null point. If the
dimension of U is N + 1, then the set comprising ~m along
with the bk’s spans U, implying that U comprises no null
points other than ~m.

Proof of 2. Since, as is easily verified, the mean value of
any impact function fk has no influence on Dk(m) for any
modulator m, we assume without loss of generality that
each of the fk’s has mean 0; thus, if appropriately scaled,
each of the fk’s is a modulator. Hence, the space U spanned
by the fk’s is itself a modulation space of dimension N that
is devoid of null points.
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